Reflex

Scripting Language Reference

§
INCAPTURE
@TECHNOLOGES

Copyright © 2015 Incapture Technologies, LLC. All Rights Reserved.

Incapture and the Incapture logo, among others, are trademarks of Incapture Technologies, or
one of its parent or subsidiary companies, in the United States and other countries.

This document is for informational purposes only and does not set forth any warranty, express or
implied, concerning any product or service offered by Incapture. The authors and Incapture shall
have no liability or responsibility to any person or entity arising from any loss, cost, liability, or
damages arising from the information contained in this document.

Document version 1.10, January 2015

Contents

[eTo [0 o i o] o EO PSP P PP PUPPPPPPRPPTPTRPN 6
U [0 1T o 6
Supported Hardware and SOftWare..........coooiiiiiiiiiii e 6

D = W Y 01 S TP 7
D= 11 011 (0] 7

11 0 3P 7
N U] 0T T 8
] £ 8
1Y L o = T 8
=T o TSP U UPPRT 8
TYPE CONVEISION ...ttt 8

(O 01T =1 (0] £ T PSP PP PP PP TPPUPPPPPRTRTN 10
Standard OPEIALOrS........couuuuiii e e e e e e e e e e e e e et aeeaaeeerrraaaas 10
SPECIAI OPEIALOIS. .. . ettt e e e e et e e e e e e e e e ta e e e e eeeesrtaaaens 11

[[0 1TV o T 1 o | 13
CoNAItIoNAl FIOW.....cooeiieeceeeee e 13
0 0 01 N 13
2T U= TaTo I @] o 1] U T P 14

CUSEOMIZEA FUNCLIONSii i e e e e e et s e e e e e e eaaetaa e e e aeaeeaennnes 15

IMOAUIBS ...ttt ettt ettt ettt aananaanne 16
Creating MOAUIES ... 16
IMPOITING MOUUIES ...ttt 17
UsING BUII-IN MOAUIESo e e e e e aaeees 18

S =] 1108 18
L1001 0 0 = TP 18
S 19
IMIAEN ..t 19

STU] 01=T 0 (o] [20
PUIPOSE Of SUSPENSION ...ttt 20
FUNCLIONS fOr SUSPENSION.......ciiiiiiiieii e e e e e e 20

LS £S 0= o 1SRRI 20
(@7 || I 20
(@221 = od | o | PR 21
L@y = (8 = 21
LG, 11 S 21

S Yox g o] (1 o 1Y =31 o o 22
Reflex from @ WED SEIVEI ... e 22
RETIEX FrOM RAPIUIE ... 22

Appendix: Reflex Standard LiDrary ... 24
= 1| SRR 24
= 0P 24
(o] 1Y 25
2 L1] AT TP UPPRTR 25
(o7 | PR 25
CAPADIIITIES ..o 26
07>] A TP PPTRPPTRPN 26

Reflex Scripting Language Reference 3

030 1] 27
(010] o)V OO 27
(0 (=P PSPPSR PPPPPPPPPPPRPRPPR 27
[0 1= o 0 T 27
[0 = 11 0T 27
(0 =] =] (TSNP 27
(o1 =1 (=] g [od = PPN 28
[0 10T 0111 1= 28
L2 = 1 28
{1 [S T PSPPI 28
L1 L =T S 29
L0 (o S 29
1{0] 1 1 F= L SRR 29
FTOMSON <.ttt e b annnnane 30
[0 =3 (od o ISR 30
[0 =1 IR 30
NASCAPADIIITY ... 30
0] 0 o) £ PP 31
557 1= 31
153 (0] o = 31
[0 PP PPPPPPPRP 31
150 31
ST T PP PPPPPPPPPPPN 32
] PP 32
0= 10 32
101 3PP 32
LT (0 PP 32
L= o =T S 33
LT TSTT= Lo P 33
010 1 33
0 1T 34
11 34
7= 0 o PP 34
(== T o[PP 34
(=] 00101V ST PPPPR 35
1] 0] =T 35
(0] 1o o U PSPPI 35
101 SR 35
1011 L o S 35
S 4= TR PSR UPPRPR 36
S B e 36
ST 0= L1 o 36
L] o] PP RRRP 36
SPIIWITN . 37
TAKEWNIIE ... 37
101041 0] =1 L= 37
1010 1= TSP 38
1010 1= SR 38
L= 1] 0101 38
1877 8110 IO P PP TP PPPPPPPPPPPRPRPPN: 38

Reflex Scripting Language Reference

0010 1= 39

U] [0 [T oo To [39
U =Y g (o Yo [39
L8 1S 39
LU 1o T 39
A= | £ 39
1772 L TR 40

Reflex Scripting Language Reference 5

Introduction

Reflex is a scripting language developed at Incapture Technologies. It is designed for
performing cloud-based data manipulation. Reflex takes very little resource overhead,
and therefore handles the data interactions more efficiently than JRuby, Jython, or any
other standard scripting tool.

This reference presents a comprehensive description of Reflex, including its types,
keywords, operators, and built-in library functions.

Audience

This manual is intended for developers and software architects using Rapture.

Supported Hardware and Software

This manual applies to versions 1.1.16 of the Rapture Platform and to later versions.

6 Reflex Scripting Language Reference

Data Types

Reflex is a loosely typed language that infers the type of a variable based on its context.
Wherever possible, type coercion occurs automatically when a new type is needed in the
current context.

Definitions
Table 1 defines the full list of data types in Reflex.

Table 1. Data type definitions

Type Example Description |

string "Hello” An array of characters

number 4.0 An integer or a float

boolean true A boolean value

list [1. 2, 3] A list of values

map { "key® : “value® } An associate map, mapping keys to
values

matrix L-1 A 2-dimensional sparse matrix

date date() A calendar date

time time() A time

file file("test.txt") A file object for reading or writing
data

queue queue("test”, "thequeue”) Queue objects receive and send
messages within Rapture.

nul null Represents the null value

void void An untyped object

lib lib(className) Represents a Reflex library

stream st = file("test.txt", "CSV") A stream of data from a file

When first using a variable of any of these types, putting the keyword const before the
type name makes the variable both static and global.

Additional details about some of these types are presented in the following subsections.
Strings

String literals can be enclosed in either single quotes or double quotes. The standard
escape characters, such as \n for newline, are supported.

Note that, if a string literal is bound by double quotes, any single quotes it contains are

not escaped. Similarly, double quotes are not escaped if the string is bound by single
quotes.

Reflex Scripting Language Reference 7

Numbers
Number variables can take either integers, floating point numbers, or numbers in
scientific notation for assigned values.

The developer can 'lock’' a number variable to accept only internal integer types, by
placing an upper-case "L" directly after the value, as in the following example.

num = 360L;

This feature helps prevent type conflicts when using numbers in native Java calls.

Lists

As shown in Table 1, lists are always enclosed in square brackets. Their elements can
be either string or numeric literals, or any expression that includes variables that have
been previously defined.

Different element types can be used within the same list, and lists can be nested.

Matrices

Matrices are two-dimensional; the entries, column identifiers, and row identifiers in a
matrix can be denoted by any Reflex value (for example, columns can be numbers and
rows can be strings). If an entry in a matrix has not been assigned a value, it is assumed
to be null. The following lines of code initialize a matrix and populate one of its entries:

a=1[-1;
a[4, "Temperature™] = 98.6;

Maps

Map expressions are enclosed in curly brackets, and are typically in JSON-compatible
format. The rules for map elements are similar to those for lists, and maps themselves
can also be nested. The following examples illustrate some common ways to store key-
value pairs in a map.

a = {}; // An empty map

b=4{"a" - 4 }; // A single-entry map, with "a® as the key and 4 as
the value

c =4 "one” - 1, "two" : 2, "three" : 3};

d ={ “outer® : { "inner" : true } }; // A nested map

Type Conversion

Reflex handles many type conversions implicitly, and a few others take advantage of
built-in Reflex functions.

Table 2 shows what conversions are possible.

8 Reflex Scripting Language Reference

Table 2. Type Conversions

To String Number Boolean List Map Date Time
String auto auto auto auto auto auto
Number cast() X epoch msecs
Boolean X X X X X X
List X X X X X X
Map X X X X X X
Date YYYYYMMDD epoch X X X X
Time HH:MM:SS msecs X X X X

Reflex Scripting Language Reference 9

Operators

Most operators in Reflex are similar or identical to commonly used operators in other

languages.

Standard Operators

Table 3 summarizes the standard operators and presents examples. Note that the
assert macro, which is useful for simple debugging, causes a Reflex script to terminate
with an error if the expression evaluates to false.

Table 3. Simple Reflex Operators

Operator Symbol Examples

AND && assert(true && true);
OR [l assert(true || false);
Not ! assert(!false);

Less than < assert(1 < 2);
Greater than > assert(4 > 3);

Equal to == assert(5 == 5);
Addition + assert(1 + 7 == 8);

assert([1] + 2 ==[1,2));

Subtraction -

assert(10 — 1 == 9);
assert([1,2,3] — 3 ==[1,2));

Multiplication *

assert(50 * 2 == 100);

Division

assert(4/ 2 == 2);

Modulus ()

assert(99 % 3 == 0);

Exponent

assert(2 ~ 3 == 8);

Ternary

X >y ? assert(x > y) : assert(y >= x);

= >~

Index

For these variables:
a=[1,2,3,4,5];

b ="abcdefg";
c={'one':1,'two': 2}
These are the examples:
assert(a[0] == 1);
assert(a[l..2] ==[2, 3]);
assert(b[0] =="a");
assert(b[1..2] == 'bc");
assert(c['one'] == 1);

10

Reflex Scripting Language Reference

Special Operators

Two special operators called push and pull are used for writing data to and reading data
from an external source, respectively. Their symbols are --> for push and <-- for pull.

All data is pushed to or pulled from a file object or a queue object, as defined in Table 1.
The data itself can be a string type, a list type, or a map type. However, it is important to
ensure that the script pull the same type of data that was originally pushed into a file.
Because the queue object works only with messages taken from or added to the
Rapture queue, only one format is allowed for the data.

The following code shows a simple example that uses the push and pull operators. It
uses a repository named test.config to store map data. The first script defines the
structure and pushes it as follows:

config = {};

// Write the map data
config["Optionl®] = true;
config[“level™] = 42;

// Create a document
displayName = "test.config/main”;
// Write the map to the document
config --> displayName;
Next, a different script pulls in the map data and uses it to control the script's behavior:
appConfig <-- displayName;
it (appConfig["Optionl®]) do
printin('level is " + appConfig[“level"]);
else do

printIn("'Optionl is not set.");
end

Note that println, which is a built-in function in Reflex, handles simple formatted
printing, as in this example. If all is well, the output from the second snippet of code
would be: level is 42.

If a file is in a repository that supports metadata, two other operators are available for
manipulating the metadata. These are metapush and metapull, denoted by -->> and <<--

The following code snippet simply prints the metadata from a specific file.

Meta <<-- "c_smrs/official/physical/bond/861594AB5";
println ("Meta is " + Meta);

The resulting output would resemble the following:

Reflex Scripting Language Reference 11

Meta is {version=1,
writeTime=1351614168682,
user=alan,
comment=Featurelnstaller,
deleted=false}

Finally, Reflex supports a download/write-back operator, denoted by <-->, which
transfers data from a URI to a Reflex value, so that a simple operation on the Reflex
value can take place and the updated data can be written back to the URI. An example
of the syntax for this operator would be as follows:

uri® <--> v {
v[“hello"]=1;

12 Reflex Scripting Language Reference

Flow Control

Reflex supports flow control and looping with the same keywords and syntaxes as most
other languages.

Conditional Flow

The if statement works as expected, with or without an else block to supplement it. The
syntax is:

iT booleanExpression do
codeBlock;

end

[else do
codeBlock;

end]

No semicolon is required after the end keyword.

Loops

The while loop also works as expected. Its syntax is:

while booleanExpression do
codeBlock;
end

There are two different forms of the for loop. One of these forms loops on a sequence of
numeric values and works like its counterparts in other languages. An example follows:

for a = 1 to 10 do
printIn("'The value of a is " + a);
end

The other form of the for loop in Reflex works on elements in a list expression. The
following example illustrates the process:

assert(b == [2, 4, 6, 8]);

The third type of loop in Reflex is the pfor loop, which is identical in syntax and
functionality to the for loop. The only difference is that Reflex attempts to run the pfor
loop in parallel, executing each statement in a pool of threads, so that multiple pfor loops
can be run in parallel. This loop supports both the numeric and list expression forms, but

Reflex Scripting Language Reference 13

the developer should be aware that sequencing of events between parallel blocks may
not take place in a predictable order.

Break and Continue

Reflex supports the break and continue keywords as they are used in other languages
when controlling loops. The following snippet of code demonstrates the use of the break
keyword.
res = [];
for 1 =0 to 10 do
res = res + i;
if 1 ==5do
break;
end
end
assert(res == [0,1,2,3,4,5]);
The following code demonstrates the use of the continue keyword.

res = [];

assert(res == [5,6,7,8,9,10]);

14 Reflex Scripting Language Reference

Customized Functions

Reflex supports user-defined functions through the def keyword. The syntax of these
functions is:

det functionName(parameters)
codeBlock;
end

After the definition, the script can directly call functionName(parameters).

Note that the def syntax does not require (or allow) the user to name the parameter
types or the function return type. This feature allows the developer to be free with both
the parameters and the return value, if one is used. The only constraint is that the body
of the function and the code using its return value must be able to tolerate any type
differences.

Variables declared outside the scope of the function cannot be used by the function

unless they are global variables, or unless they are directly passed to the function as
parameters.

Reflex Scripting Language Reference 15

Modules

Modules are blocks of user-created Java code that Reflex scripts can call to augment
their functionality. A module is imported into the script and given an alias, after which the
functions in the module code can be called directly. Examples are shown in the
Importing modules subsection.

Creating modules

Any Java class that needs to be called from a module must import the package called
reflex. importer.Module. For reference, the code in this package is reproduced
here.

public interface Module {

ReflexValue keyholeCall (String name, List<ReflexValue>
parameters);

boolean handlesKeyhole();

boolean canUseReflection();

void configure(List<ReflexValue> parameters);

void setReflexHandler(1ReflexHandler handler);

}

The two boolean members of this interface correspond to the two possible ways that a
module can interact: by using keyhole calls and/or by using reflection. Both of these
techniques are discussed here. (Note that the code above uses classes from other
Reflex packages.)

For modules that use keyhole calls, the Reflex script must invoke the keyholeCall ()
method each time a method from the module is used. As an example, if a Reflex script
calls a method named addOne from a module and passes the parameter 5 to the
method, the code in the module to handle the transaction would be:

List<ReflexValue> params = new ArrayList<ReflexValue>();
params.add(new ReflexValue(5));
ReflexValue result = module._keyholeCall(*'addOne'™, params);

For modules that use reflection, any custom methods must return the type
ReflexValue and must take a single List<ReflexValue> parameter. The following
code demonstrates how the addOne method could be implemented in a module using
this approach. It also adds exception handling to the new method.

package reflex._.module;
import java.util_HashMap;
import java.util_List;
import java.util_Map;
import reflex.IReflexHandler ;
import reflex_ReflexException ;
import reflex.importer._Module;

16 Reflex Scripting Language Reference

import reflex.value_ReflexValue ;
public class TestModule implements Module {

@Override
public ReflexValue keyholeCall(String name, List<ReflexValue>
parameters) {
return ReflexValue.VOID;
he

@Override

public boolean handleskeyhole() {
return false ;

+

@Override

public boolean canUseReflection() {
return true ;

+

@Override
public void configure(List<ReflexValue> parameters) {

}

@Override
public void setReflexHandler(IReflexHandler handler) {

}

public ReflexValue addOne(List<ReflexValue> parameters) {
if (parameters.size() 1= -1) {
throw new ReflexException(-1, "addOne needs one parameter 1'");

}
Integer v = parameters.get(0).asint() ;

return new ReflexValue(v.intValue() + 1);

}
}

Note in the code that asInt is a member method of ReFlexValue that, if possible,
converts the ReflexValue data to an integer.

Importing modules

A Reflex script must first import a module before invoking any of its methods. The
command to do so is:

import packageName as moduleName [with (parameters)]

where packageName is the Java path to the module code, moduleName is the alias
used internally by the script, and any parameters are passed to the configure function
of the interface. After the import, the dollar sign is used on the alias to reference
methods in the module, for example: $someModu leName . addOne(5).

Reflex Scripting Language Reference 17

Using built-in modules

Four built-in modules are included with the Reflex software, all of which are taken from
third-party, open-source libraries. These modules are:

Statistics module
Gamma module
Erf module

Math module

All four modules use the reflection technique to implement their methods.

Statistics

The statistics method within the statistics module accepts an array of data points and
returns the mean, median, and standard deviation. In addition, the statistics module has
two frequency functions: frequency_count counts the number of points matching a
frequency value, and frequency_cum_stat calculates the cumulative percentage of
points matching a value. The following code snippet and its output illustrate all of these
functions.

import reflexStatistics as stat;

points = [1,2,3,4,5,6,7,8,9,10,100];
res = $stat.statistics(points);
printIn("'Result is " + res) ;

multiplePoints = [1,2,1,1,1,1,2,1,2,4,5,1,2,3,5];
freq = $stat.frequency(multiplePoints);
printIn("'Count of 1 in frequency is " +
$stat. frequency_count(freq, 1)) ;
for 1 =1 to 5 do
printIn("'CumPct at " + 1 + " 1s " +
$stat.frequency_cum_pct(freq, i1));
end

- - - output - - -

Result is {median=6.0, std=28.637229424141385,
mean=14_.09090909090909}

Count of 1 in frequency i1s 7

CumPct at 1 is 0.4666666666666667

CumPct at 2 is 0.7333333333333333

CumPct at 3 is 0.8
CumPct at 4 is 0.8666666666666667
CumPct at 5 is 1.0

Gamma
The gamma module contains methods for calculating the gamma function, the digamma
function, and the trigamma function on a single parameter.

18 Reflex Scripting Language Reference

In addition, the gamma method can be used without a parameter to return the gamma

constant.

Erf

The erf module contains the erf method, for calculating the error function on a single
parameter, and the erfc method, for calculating the error function coefficient for a single

parameter.

Math

The math module supports a standard set of trigonometric, exponential, and similar
functions. Table 4 summarizes the full set of methods in this module.

Table 4. Math module methods

Method Parameters Description

pi none Returns the constant ©

e none Returns the constant e

abs number Returns the absolute value of number

acos number Returns the arc-cosine in radians

asin number Returns the arcsine in radians

atan number Returns the arctangent in radians

atan2 numberl, Returns the arctangent "2-parameter" result of numberl
number2 and number2.

cbrt number Returns the cube root of number

ceil number Returns the number rounded up to the nearest integer

coS number Returns the cosine, with the parameter in radians

cosh number Returns the hyperbolic cosine

exp number Returns e raised to the power of number.

expml number Returns exp(number) - 1

floor number Returns the number rounded down to the nearest integer

hypot numberl, Returns sqrt(number1”2 + number2°2)
number2

log number Returns the natural (base e) logarithm of number

log10 number Returns the base-10 logarithm of number

loglp number Returns log10(1+number)

max numberl, Returns the maximum of numberl or number2
number2

min numberl, Returns the minimum of numberl or number2
number2

pow numberl, Returns the result of numberl raised to the power of
number2 number2

sin number Returns the sine, with the parameter in radians

sinh number Returns the hyperbolic sine

sqrt number Returns the square root of number

tan number Returns the tangent, with the parameter in radians

tanh number Returns the hyperbolic tangent

degrees number Converts number from radians to degrees

radians number Converts number from degrees to radians

Reflex Scripting Language Reference 19

Suspension

There are two possible ways to suspend the execution of a Reflex script after it begins.
Either the script can be suspended for a predetermined length of time, or a source script
can suspend itself while it executes a target script, resuming when the target completes
or fails. This practice is also known as script coordination.

Purpose of suspension

When a script in the Rapture environment is suspended, either directly or by running a
target script, all variables, parameters, and other context information is frozen. The script
can then be placed in the Rapture pipeline, or it can be assigned as a scheduled
Rapture task to be executed at a fixed time.

One of the benefits of this feature is that the script can continue on a different Rapture
server than the one on which it was started.

Functions for suspension

There are five functions for handling script suspension and execution. Note that the @
symbol at the start of a function name indicates that the function is asynchronous.

suspend

Syntax: suspend(seconds)

Description: This function simply suspends the script's execution for approximately the
number of seconds passed as a parameter.

@call

Syntax: @call(script, {parameters})

Description: This function makes an asynchronous request to execute the script,
along with any parameters that need to be passed. If the script does not take
parameters, the curly brackets should be empty.

The request is placed onto the Rapture pipeline for execution, and the function returns a
handle to the request. This handle can be used in conjunction with @status and
@walt, if desired.

Example:

program = "printIn(*l am the target script.")";

handle = @call(program, {});

20 Reflex Scripting Language Reference

@callscript

Syntax: @callscript(partition, script, {parameters})

Description: For scripts that are already hosted on a Rapture server, it is necessary to
use @callscriptinstead of @call to run the target, so that the hosting Rapture
partition can be identified. In all other respects, this function is identical to @cal l.

@status

Syntax: @status(handle)

Description: This function returns a block of metadata containing the real-time status of
a target script that has been triggered by @call or @callscript.

Example:

program = "printIn(*l am the target script.")";

handle = @call(program, {});

printIn(@status(handle));

The output of this example would be similar to the following:

{

state=COMPLETED,
taskld=2abd8d30-f7ea-4956-908c-e04737d64c0Oe,
relatedTaskld=,

creationTime=1354632237825,
startExecutionTime=1354632237827,
endExecutionTime=1354632237829,
suspensionCount=0,

output=["1 am the target script."]

}

@wait

Syntax: @wait(seconds, handles[])

Description: This function waits for a sequential array of script handles to complete or
fail. The seconds parameter suspends the execution of the source script between
completions before it wakes up to check the status of the pending target scripts.

In the following example, all 50 scripts must complete before their statuses are printed.

Example:
handles = [] ;

for i = 1 to 50 do
program = " printIn("hello from " + i + " ");";
handle = @call (program, {}) ;
handles = handles + handle;

end

@wait(10, handles) ;

for h in handles do
printIn(@status(h)) ;
end

Reflex Scripting Language Reference 21

Scripting Methods

Reflex scripts can be served either from a web server or directly from Rapture. Details of
these methods follow.

Reflex from a web server

Serving Reflex scripts from a web server requires the RefFlexScriptPageServiet.
This servlet can be bound to a file suffix (typically . rfx) and is configured in the
web.xml file. A typical configuration is shown here.

<servlet>
<servlet-name>REFLEX</servlet-name>
<servlet-class>rapture.server.web.servlet._ReflexScriptPageServiet
</servlet-class>
<init-param>
<param-name>resourcePath</param-name>
<param-value>/</param-value>
</init-param>
</servlet>
<servlet-mapping>
<servlet-name>REFLEX</servlet-name>
<url-pattern>*_rfx</url-pattern>
</servlet-mapping>

The servlet loads the Reflex script from a URI and appends any script parameters in the
standard URI format. Any output from println is sent to the HTTP client.

The code that follows is an example that runs from a web server. It prints out a JSON-
formatted string that contains entries for all features installed in a Rapture environment.

// Returns the list of features
features = #feature.getinstalledFeatures () ;
ret = [];
for feature in features do
inner = {};
inner|["feature®] = feature ["feature"];
inner ["description®] = feature ["description”];
ver = feature ["version"];
inner ["version®] = ver ["major "] + "." + ver ["minor®"] + ".°
+ ver [“release™];
ret = ret + iInner;
end
printIn(json(ret));

Reflex from Rapture

Serving Reflex scripts from Rapture requires the ReflexRefScriptPageServiet.
Rather than using a URI, this servlet is configured to reference a path to the script on a

22 Reflex Scripting Language Reference

Rapture partition. After the script is loaded, its execution behaves in the same way as it
does when served from the web.

The following servlet configuration code is typical for Reflex scripts served from Rapture.

<servlet>
<servlet-name>REFLEXREF</servilet-name>
<servlet-class>rapture.server.web.servlet.ReflexRefScriptPageServ
let
</servlet-class>
</servlet>
<servlet-mapping>
<servlet-name>REFLEXREF</servlet-name>
<url-pattern>*_rrfx</url-pattern>
</servlet-mapping>

Reflex Scripting Language Reference 23

Appendix: Reflex Standard Library

This appendix lists the complete set of built-in functions that are usable in Reflex scripts.

NOTE: Reflex treats all the functions listed here as keywords. Therefore, it is not legal to
create, for example, a variable that has the same name as one of these functions.

all

Syntax: boolean all(booleanFunction, listExpression)
Description: The al l function takes a previously defined boolean function and tests it
against every item in FistExpression. It returns true if all items in
listExpression are tested as true.
Example:
def isThree(val)
return val == 3;
end

inputListl = [1,2,3,4];

inputList2 = [3,3,3];

resultl = all(isThree, inputListl);
result2 = all(isThree, inputList2);

assert(resultl == fTalse);
assert(result2 == true);
any

Syntax: boolean any(booleanFunction, listExpression)
Description: The any function takes a previously defined boolean function and tests it
against every item in FistExpression. It returns true if any item in
listExpression is tested as true. (The function will stop testing as soon as it
evaluates a true item.)
Example:
def isThree(val)

return val == 3;
end

inputListl [1,2,3,4];

inputList2 = [2,4,6];

resultl = any(isThree, inputListl);
result2 = any(isThree, inputList2);
assert(resultl == true);
assert(result2 == false);

24 Reflex Scripting Language Reference

archive

Syntax: file archive(parameters)

Description: The archive function opens an existing WinZIP-compatible file, or
creates one if the file is not found. Reflex map objects can be written to and read from an
archive file with the standard Reflex push and pull operators.

The following examples illustrate how objects are first written to, and then read from, an
archive.

Examples:
arcFile = archive(''test.zip");

datakEntryl = {"dataFieldl": 42, "data2'": "A string"'};
dataEntry2 = {"dataFieldl™: 34, "data3": "A different string "};

datakEntryl --> arcFile;
['DataEntryTwo", dataEntry2] --> arcFile;

close(arcFile);

arcFile = archive('test.zip");

dataRecordl <-- arcFile;
dataRecord2 <-- arcFile;

close(arcFile);

printIn("’First record data is " + dataRecordl["data®]);
printIn(’*'Second record data is " + dataRecord2[*data“]);

assert

Syntax: assert(booleanExpression)

Description: The assert function is used mostly for simple testing and debugging. If
booleanExpression evaluates to false, the script terminates immediately with an
error.

Example:

a=2+ 3;

assert(a == 5); // and the script continues to run

call

Syntax: object call(libExpression, stringExpression,
mapExpression)

Description: Once a third-party library is loaded with the 1ib function, the call
function runs a specific method from within that library.

The libExpression is the name of the library, the stringExpression is the name
of the method, and mapExpression contains the parameters passed to the method.
The return value depends on the code in the method itself.

Example:

Reflex Scripting Language Reference 25

mylib = lib("rapture.test®);
result = call(mylib, “testFn®, {"param®™ : 42});

capabilities

Syntax: map capabilities()

Description: This function returns a key-value pair for the current instance of Rapture,
containing a string for each capability to indicate whether that capability is present.

The possible values for capabilities are:

e CACHE
e DATA
e DEBUG
e 10
e OUTPUT
e PORT
e SCRIPT
e SUSPEND
cast
Syntax: object cast(targetExpression, "'string” | "number'™)

Description: The cast function attempts to coerce the value in targetExpression
from a string to a number or vice versa. Internally, this function uses the toString
method and its own number parser.

Example:

a="1.0";

b = cast(a, "number');

assert(a == 1.0);

y = 1.0;

z = cast(y , "'string');
assert(z == "1.0%);
chain

Syntax: object chain(scriptExpression [,mapExpression])
Description: The chain function invokes another script and returns whatever return
value applies to that script (or void). If the script takes parameters, the optional
mapExpression can be used for passing them.

Example:
a = "printIn("The parameter is " + p); return true;";

res = chain(a,{"p" : 42});

printIn("'The result is + res);

The output of this example would be:

26 Reflex Scripting Language Reference

The parameter is 42
The result is true

close

Syntax: close(sourceExpression)
Description: This function closes a previously opened file or port.

copy

Syntax: copy(sourceStream, targetStream)
Description: The copy function takes data from any stream-based source and transfers
it to a stream-based target, overwriting any content previously in targetStream.

date

Syntax: date date([stringExpression])

Description: This function returns a date object. Without stringExpression, date
returns the current date. The format used in stringExpression must be yyyyMMdd.
Example:

declareDate = date("17760704");

printIn("'The Declaration of Independence was signed on " +
declareDate);

debug

Syntax: debug(expression)

Description: The debug function behaves in the same way as println, except that it
directs expression to the debugger console instead of the usual output handler.

defined

Syntax: boolean defined(identifier)

Description: The defined function returns true if identifier has previously been
used in the Reflex script.

Example:

a = 4,

assert(defined(a) == true);

assert(defined(b) == false);

delete

Syntax: delete(stringExpression | FileExpression)
Description: This function deletes either a file from the system or a Reflex file object. Be
sure to test that the file exists before attempting to call delete.

Reflex Scripting Language Reference 27

difference

Syntax: list difference(listl, list2)

Description: The difference function returns a list of all unique elements from listl
and list2 that are not common to both lists. It works on lists of numbers or lists of
strings.

Example:

a = [1,2,3];

b = [3,4,5];

c = difference(a, b); // c contains [1,2,4,5]

dropwhile

Syntax: list dropwhile(booleanFunction, listExpression)

Description: The dropwhi e function uses a previously defined function to test every
element in IistExpression, and removes the item from the output list until it reaches
an item for which the test evaluates to false.

Example:

def isNotThree(val)
return val 1= 3;

end

inputList = [1,2,3,4];

result = dropwhile(isNotThree, inputList);
assert(result == [3,4]);

evals

Syntax: string evals(stringExpression)
Description: The evals function attempts to expand embedded variables in a quoted
string, returning a regular string as output.

Example:

legs = 8;

evalstring = evals("'Spiders have ${legs} legs.");
assert(evalstring == "Spiders have 8 legs.');
file

Syntax: file File(stringExpression)

Description: This function creates a Reflex Ti le object, where stringExpression is
a reference to an existing file or folder. The resulting file object can be written to or read
from with the push and pull operators, as the example demonstrates.

Example:
a = "/tmp/test._txt";
data = "This is some text\n';

aFile = file(a);

data --> aFile;

28 Reflex Scripting Language Reference

b = "/tmp/test.txt";
bFile = file(b);

data2 <-- DbFile;
assert(data == data2);

filter

Syntax: list Filter(FilteringFunction, listExpression)
Description: The filter function applies a user-defined, boolean
TilteringFunction to each item in listExpression, copying the item to the
returned list if the filtering returns true.
Example:
deft fTiltering(val)

return val % 2 == 0O;
end

inputList = [1,2,3,4];
result = filterFn(filtering, inputList);
assert(result == [2,4]);

fold

Syntax: object fold(foldingFunction, initialExpression,
listExpression)
Description: This function applies a user-defined foldingfunction to each item in
listExpression, storing the result in an accumulator. The folding function must
contain exactly two parameters: the current accumulator and the current item in the list.
The accumulator is set to initialExpression before the first folding function is run.
When all items in the list have been folded into the accumulator value, fold returns the
result.
Example:
def foldingsum(current, listval)

return current + listVal;
end

inputList = [1,2,3,4];
result = fold(foldingsum,O, inputList);
assert(result == 10);

format

Syntax: string format(embeddedString, var [,var]...)
Description: The format function attempts to expand string and number variables
represented by %s and %d placeholders in embeddedString.

Example:
a = 25;
thismonth = December;

Reflex Scripting Language Reference 29

result = format(*'Today is %s %dth', thismonth, a);
assert(result == "Today is December 25th."");

fromjson

Syntax: map fromjson(stringExpression)

Description: This function creates a Reflex map object from a JSON-formatted string.
Example:

a = "{"one" : 1, "two" : 2}~;

b = fromjson(a);

assert(b["one"] == 1);

getch

Syntax: string getch()

Description: The getch function retrieves the first typed character from standard input
and places it into a single-character string. This function is currently supported only
within ReflexRunner.

getin

Syntax: string getIn()

Description The getln function retrieves typed characters from standard input until it
receives a newline, and places all characters before the newline into a string. This
function is currently supported only within ReflexRunner.

hascapability

Syntax: boolean hascapability(capabilityString)
Description: This function returns true if the current instance of Rapture contains the
capability passed as the parameter.

The possible string values for capabilities are:

e CACHE

e DATA

e DEBUG

e 10

e OUTPUT

e PORT

e SCRIPT
e SUSPEND

30 Reflex Scripting Language Reference

Import

Syntax: import

Description: The import function references a third-party module, so that its functions
can be called from within the Reflex script. Refer to the Modules section for further
details.

isfile

Syntax: boolean i1sfile(stringExpression | fileExpression)
Description: The isfile function returns true if a file represented by expression is
found.

isfolder

Syntax: boolean i1sfolder(stringExpression | fileExpression)
Description: The isfolder function returns true if a folder represented by expression
is found.

join
Syntax: string join(stringl, ..., stringN)
list join(objectl, ..., objectN)
Description: The join function accepts any type that can be used in a list, but returns a
concatenated string if all the parameters are strings. Otherwise, it returns a single list of
all the parameters.
Example:
assert(join(a,b,c) == "abc");
assert(jJoin(1,2,3) == [1,2,3]);

json

Syntax: string json(mapExpression)

Description: The json function converts a Reflex map object to a JSON-formatted
string. (It does not deal directly with JSON documents.) It is the inverse of the fromjson
function.

Example:
a = {"one” : 1, "two" : 2};
al =" " + aj;

a2 = json(a) ;

assert (al == "{one=1, two=2}");
assert (a2 == "{"one™ : 1, "two™ > 2}7);

Reflex Scripting Language Reference 31

keys
Syntax: list keys(mapExpression)
Description: The keys function extracts the key from each key-value pair in a Reflex
map, storing all the keys as a Reflex list of strings.
Example:
a = {"one":1, "two":2},;
b = keys(a); // b == [Fone", “two]
for k in b do
printIn(C’Key "™ + k + " value i1s " + b[k]);
end

lib

Syntax: lib lib(stringExpression)

Description: The purpose of the lib function is to link a third-party library to Reflex. The
stringExpression must reference a loadable class that implements the
IReflexLibrary interface.

IMPORTANT: The third-party add-in needs to be on /classpath, along with any
dependencies it may have.

Example:

mylib = lib("rapture.addins.BloombergData®);

mapkn
Syntax: list mapFn(mappingFunction, listExpression)
Description: The mapFn function applies a user-defined mapping function on each item
in ListExpression, copying the mapped result into the output list.
Example:
def mapping(val)
return val*7;
end

inputList = [1,2,3,4];
result = mapFn(mapping, inputList);
assert(result == [7,14,21,28]);

mdS

Syntax: string md5(string)

Description: The md5 function returns an md5 hash of its string parameter. Strings in
Rapture that contain sensitive information (such as passwords) must always be hashed
before being passed over a non-secure link.

merge

Syntax: map merge(mapExpression, mapExpression, [,---1)
Description: The merge function takes two or more maps and returns a single map of
merged key-value pairs from the parameters. If two or more maps have the same key,

32 Reflex Scripting Language Reference

the value in the merged map will be taken from the rightmost map in the parameter list.
When the maps are nested, any lower-level maps will be merged recursively.

Examples:

a={ "one” - 1 };

b={ "two® - 2 };

c = merge(a, b);

assert(c == { "one® - 1, "two" : 2 });
d={ "one”™ - 1 };

e = { “one”™ : “uno® };

T = merge(d, e);

assert(f == { "one™ : “uno® });

g={ "inner® - { "one" : 1 }};

h = "tnner® - { "two"™ : 2 }};

i = merge(g,h);

assert(i == {"inner® - { "one® : 1, "two" : 2 }});
mergeif

Syntax: map mergeif(mapExpression, mapExpression, [,--.1)
Description: The mergeif function behaves identically to the merge function, except
that it does not overwrite an existing value if more than one map has the same key-value
pair.

Examples

a={ "one” - 1 };

b= "two® - 2 };

c = mergelf(a b);

assert(c == { "one® - 1, "“two" 2 P;
d={ "one” - 1 };

e = { “one”™ : “uno® };

T = mergeif(d, e);

assert(f == { "one” : "1° });

message

Syntax: message(providerld,messageld)

Description: This function takes a message with message ld from the message queue
on the active Rapture server, and copies the message to another server with
providerld.

mkdir

Syntax: mkdir(pathExpression)
Description: The mkdir function behaves similarly to the shell command. The
pathExpression parameter is a string that can specify an absolute or relative path.

Reflex Scripting Language Reference 33

print

Syntax: print(expression)

Description: The print function behaves exactly as its println counterpart, described
below, except that it does not append a newline character at the end of expression.
Example:

print("'Hello, world!");

print(’* These words are on the same line.");

printin(C*"");

printin

Syntax: printIn(expression)

Description: The println function first takes each element of expression, coerces it
into a string, and concatenates the string, appending a newline character. Finally, the
string is sent to the registered output handler, which is typically standard output, the
Eclipse console, or a log file.

Example: The following statements are all legal uses of printin:
printin(C'Hello, world!™);

printin(5);

printin({}); //prints an empty map

printin("'Rap™ + ""ture');

rand

Syntax: number rand(numberExpression)
Description: The rand function returns a randomly generated integer between zero and
the value of numberExpression, inclusive.

readdir

Syntax: list readdir(pathExpression)
Description: The readdir function returns a list of files and subfolders in the directory
that pathExpression denotes. The following example demonstrates a function that
recursively prints out the names of all subfolders in a path.
Example:
def readFolder(folder)
printIn('Looking at " + folder);
FfilesAndFolders = readdir(folder);
for fAndf in filesAndFolders do
if isfolder(fAndf) do
readFolder (fAndf);
end
end
end

readFolder("/tmp");

34 Reflex Scripting Language Reference

remaove

Syntax: remove(mapExpression,mapKeyExpression)
Description: This function takes the map object given by mapExpression, and
removes the map entry with the key that matches mapKeyExpression.
Example:

a = {};

a["one"] = 1;

a["two"] = 2;

assert(size(keys(a)) == 2);

remove(a, "one");

assert(size(keys(a) == 1);

assert(a["one"] == null);

replace

Syntax: string replace(stringExpression,oldsubstrExpression,
newsubstrExpression)

list replace(listExpression,oldLilstltemExpression,
newListltemExpression)

Description: The replace function can operate on either strings or lists. For strings, it
searches stringExpression for every occurrence of oldsubstrExpression and
replaces it with the string given by newsubstrExpression. For lists, the behavior is
identical, replacing any old list items in 1istExpression with the new item in the
parameter set.

Example:

a ="1 am a Java developer.";

b = replace(a, " Java",""Reflex');

assert(b == "I am a Reflex developer.™);

round

Syntax: number round(numberExpression)
Description: If numberExpression is a floating point value, round returns the closest
rounded integer, either up or down.

rpull

Syntax: object rpull(sourceld)

Description: The rpull function is an extension of the pull operator that is designed for
documents, series data, and sheets only. It returns document data as a map, a sparse
matrix containing all the elements of a series, or a sparse matrix containing all the cell
values in a sheet, depending on the type of parameter data.

rpush

Syntax: rpush(targetld,dataExpression)

Description: The rpush function is the inverse of rpul I, writing map data to
documents or matrix data to a series or a sheet.

Reflex Scripting Language Reference 35

Size

Syntax: number size(listExpression | stringExpression)

Description: The size function takes only one parameter, either a string or a list, and
returns the parameter's length. Note that size(null) returns 0.

Example:

a = [0,3,7,6];

assert(size(a) == 4);

sleep

Syntax: sleep(integerExpression)

Description: The sleep function pauses the Reflex script for approximately the number
of milliseconds given by integerExpression.

spawn
Syntax: process spawn(listExpression [,mapExpression,
FfileExpression])

Description: This function spawns a child process, where l1istExpression contains
the command to launch the process, along with any flags or other parameters used by
the process. The environment of the process can be specified with mapExpression,
and fileExpression identifies the folder under which the process is run.

The process object that spawn returns can use the pull operation to retrieve its standard
output, and the wai t function can be used to determine when the process has ended.

The spawn function is available only in environments where spawning is supported, such
as ReflexRunner. Spawning is not supported on the Rapture server.

Example:

env = {"PATH"™ : "/bin"};
folder = file (*/tmp*) ;
program = [*/bin/lIs*, "-17];

p = spawn(program, env, folder);
wait(p);
out <-- p;

printIn(’'Output from process is ' + out);

split
Syntax: list split(stringExpression,separator,parseBoolean)

Description: This function splits the string given by stringExpression into multiple
strings, copying each substring to the output list. The separator parameter is a character

36 Reflex Scripting Language Reference

that indicates where to split the substring. If parseBoolean is true, and if the
separating character appears in a quote, the string that quotes it will not be split.
Example:

a = ""Here, I1","sit"";

b = split(a,”,",false);

assert(b == [""Here","I1","sit"]);
c = split(a,”,",true);

assert(c == ["Here, 1","sit"]);
splitwith

Syntax: list splitwith(booleanFunction, listExpression)
Description: This function splits 1 istExpression into two lists and places both into a
nested list as output. The splitting point is determined by a previously defined boolean
function that tests each item in IistExpression. The second list begins with the first
item in 11stExpression for which this test returns false.
Example:
def isNotThree(val)

return val 1= 3;
end

inputList = [1,2,3,4];

result = splitwith(isNotThree, inputList);
assert(result == [[1,2],[3.4]10]):

takewhile

Syntax: list takewhile(booleanFunction, listExpression)
Description: The takewhi le function uses a previously defined boolean function to
test each item in IistExpression, and it copies these items to the output list for as
long as each item's test evaluates to true. Copying stops as soon as an item's test
evaluates to false.
Example:
def isNotThree(val)

return val 1= 3;
end

inputList = [1,2,3,4];

result = takewhile(isNotThree, inputList);
assert(result == [1,2]);

template

Syntax: string template(stringExpression,mapExpression)
Description: The template function takes a string as its input that behaves as a
"template," with variables denoted by angle brackets (< >). The mapExpression

Reflex Scripting Language Reference 37

parameter contains the names and values of each variable, and template returns a
regular string with each of these variables filled in.

Example:

tmp = "Hello, <who>!"

vars = {"who" : “world"};

val = template(tmp, vars);

assert(val == "Hello, world!");

time

Syntax: time time([stringExpression])

Description: This function returns a time object. Without stringExpression, time
returns the current time on the system clock. The stringExpression must be a time
formatted as HH:mm:ss. The time function is complementary to the date function,
covered earlier.

timer

Syntax: number timer([timerStart])

Description: The timer function acts as a stopwatch that measures the elapsed time
between its calls. Without parameters, the stopwatch begins counting and returns the
start time. If called with a start time parameter, the timer returns the amount of time
elapsed since it was last started or reset.

Example:

a = timer(Q);

sleep(1000);

b = timer(a);

printIn("'Elapsed time is " b);

transpose

Syntax: matrix transpose(sourceMatrix)

Description: The transpose function transposes the rows and columns of the
sourceMatrix and copies the result into the output.

Example:

a[7,4] = "string-;

b = transpose(a);

assert(b[4,7] == "string”);

typeof

Syntax: string typeof(expression)

Description: Returns the name of expression's data type, as defined in this
document's section on Data Types. If expression has no type, typeof returns "void."
If expression has a type that is not included in the list of internal types from Table 1,
typeof returns "object.”

Example:
a = "This is a string ";

38 Reflex Scripting Language Reference

ifT typeof(a) == "string" do
printIn("'Yes, "a" is a string");
end

unique
Syntax: list unique(listl, list2)
Description: This function is identical to the difference function.

urldecode

Syntax: string urldecode(sourceExpression)

Description: This function takes a sourceExpression string that represents a
percent-encoded URL and copies it to the output, replacing all percent-encoded
characters with their normal ASCII values.

urlencode

Syntax: string urlencode(sourceExpression)

Description: This function takes a sourceExpression representing a normal URL and
copies it to its output, replacing any unsafe ASCII characters with their percent-encoded
equivalents.

use

Syntax: use(remoteName)

Description: The use function opens a Rapture "Remote," which connects one Rapture
cloud environment to another. The server admin is responsible for creating and
removing Remotes.

uuid
Syntax: string uuid(Q)
Description: The uuid function generates a new, unigue string.

Example:
a = uuidQ);
b = uuid(Q);

assert(a !'= b);

vars

Syntax: string vars(sourceVariable)
Description: The vars function returns the context of the variable passed in through
sourceVariable. Possible results are "local," "global," and "const."

Reflex Scripting Language Reference 39

wait
Syntax: map wait(document [,interval ,count])

void wait(process)
Description: The wait function has two uses. Most commonly, it checks whether
document exists in Rapture, returning a map of the document's contents or null if the
document does not exist. The interval parameter specifies how long to wait until
checking for a document's existence again, and the count parameter specifies how
many intervals to wait.
In addition, wait can be used to pause a script's processing until a spawned child

process, indicated by a process object parameter, is complete. Refer to the spawn
function for an example.

40 Reflex Scripting Language Reference

	Contents
	Introduction
	Audience
	Supported Hardware and Software

	Data Types
	Definitions
	Strings
	Numbers
	Lists
	Matrices
	Maps

	Type Conversion

	Operators
	Standard Operators
	Special Operators

	Flow Control
	Conditional Flow
	Loops
	Break and Continue

	Customized Functions
	Modules
	Creating modules
	Importing modules
	Using built-in modules
	Statistics
	Gamma
	Erf
	Math

	Suspension
	Purpose of suspension
	Functions for suspension
	suspend
	@call
	@callscript
	@status
	@wait

	Scripting Methods
	Reflex from a web server
	Reflex from Rapture

	Appendix: Reflex Standard Library
	all
	any
	archive
	assert
	call
	capabilities
	cast
	chain
	close
	copy
	date
	debug
	defined
	delete
	difference
	dropwhile
	evals
	file
	filter
	fold
	format
	fromjson
	getch
	getln
	hascapability
	import
	isfile
	isfolder
	join
	json
	keys
	lib
	mapFn
	md5
	merge
	mergeif
	message
	mkdir
	print
	println
	rand
	readdir
	remove
	replace
	round
	rpull
	rpush
	size
	sleep
	spawn
	split
	splitwith
	takewhile
	template
	time
	timer
	transpose
	typeof
	unique
	urldecode
	urlencode
	use
	uuid
	vars
	wait

